
International Journal of Heat and Mass Transfer 48 (2005) 741–748

www.elsevier.com/locate/ijhmt
Optimal control of forced cool-down processes

Viorel Badescu *

Faculty of Mechanical Engineering, Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313,

Bucharest 79590, Romania

Received 12 April 2004

Available online 6 November 2004
Abstract

The optimization of forced cooling-down processes is performed using the optimal control theory. Four objective

functions are shortly presented and minimized. They include the consummated cooling fluid mass and some dissipation

measures, as the entropy generation and variants of the lost available work. The minimum duration for the cooling

process with minimum lost available work normally exceeds the minimum duration for the cooling processes with min-

imum mass of cooling fluid but the reverse is sometimes true. The minimum lost available work does not depend on the

initial and final temperatures of the cooled body but just on the duration of the cooling process. The cooling strategies

with linear (or slightly non-linear) time dependence of cooled body temperature are based on rather strong non-linear

increase in the optimum cooling fluid mass flow rate at the end of the cooling process.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An early optimization of forced cooling-down proc-

esses was made in [1]. The authors used a variational cal-

culus approach and the objective function to be

minimized was the consummated cooling fluid mass. In-

deed, the cooling fluid is an expensive commodity be-

cause it is proportional to its energy content and to

the actual refrigerator power required to produce it.

Cooling processes are wildly used in metallurgy, chemi-

cal industry and other activities traditionally covered by

thermal engineering, but also in electronics (see e.g.

[2,3]). The ‘‘cool-down’’ problem is of significant impor-

tance for example in cryogenics, where large-scale super-
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conducting windings must first be cooled to liquid-he-

lium temperature before they can be operational [4].

Other objective functions, based on various dissipa-

tion measures, could also be envisaged for cooling proc-

ess analysis. A collection of design techniques related to

a dissipation measure is for instance the method of en-

tropy generation minimization, which became a popular

tool in thermal engineering in the last 20years. It con-

sists of a mixture of classical thermodynamics, heat

and mass transfer, and fluid mechanics [5]. For pioneer-

ing studies see e.g. [6,7]. For recent results see for exam-

ple [8–10]. A number of good reviews are available, as

[1,11,12] to quote a few.

More involved dissipation measures, as for example

the lost available work, are equally useful. Indeed, the

effective management of the available work is the pri-

mary objective of various industrial activities of mechan-

ical, thermal, electrical or chemical nature. In many
ed.
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Nomenclature

A heat transfer surface area [m2]

C specific heat of cooled body [J/kg/K]

C 0, C 00 integration constants

c specific heat of cooling fluid [J/kg/K]

COP coefficient of performance

F function defined in Eq. (3.15)

H Hamiltonian

M mass of cooled body [kg]

m mass of cooling fluid [kg]

_m mass flow rate of cooling fluid [kg/s]

Q heat flux [W]

R, R 0 functions defined in Table 2

S entropy [J/K]
~S dimensionless entropy
_S entropy rate [W/K]
~_S dimensionless entropy rate

T temperature, cooled body temperature [K]

t time [s]

U heat transfer coefficient [W/m2/K]

W work [J]eW dimensionless work
_W work rate [W]
~_W dimensionless work rate

z dimensionless cooled body temperature

y dimensionless cooling fluid temperature

Greek symbols

l dimensionless cooling fluid mass

_l dimensionless cooling fluid mass flow rate

w adjunct function

s dimensionless time interval

s 0 dimensionless time (minimum mass)

s00 dimensionless time (minimum lost work)

x dimensionless time

Subscripts and superscripts

0 referring to cooling fluid reservoir

0,1 the number of the adjunct function

0! tc from start to end of cooling process

(a) first strategy of minimum lost work

(b) second strategy of minimum lost work

b! f from cooled body to cooling fluid

c cooling process

f,out cooling fluid, outlet

fin final

gen generated

init initial

in! out between inlet and outlet

l lost

opt optimum

min minimum

p constant pressure
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situations of practical interest, the minimum of entropy

generation during a process is associated with a mini-

mum of the lost available work. However, there are

cases where the minimum of the entropy generation

and the minimum of the lost available work do not coin-

cide. For a recent study on this subject see [13] where

various examples are given, including devices operating

from a heat reservoir and solar and geothermal power

plants.

The heating/cooling strategies are different from the

point of view of their costs and feasibility. Therefore,

optimization of heating/cooling processes can yield a

variety of answers, depending not only on the objective

of the optimization but also on the constraints that de-

fine the problem [13]. Designers use now a number of

well-developed techniques, which allow optimization of

both heating/cooling equipment structure and opera-

tion, as for example the method of thermodynamic cy-

cles, the method of thermodynamic potentials and the

availability (or second-low) analysis. The cooling proc-

ess optimization is treated in this paper by using a more

advanced method, namely the optimal control theory
developed by Pontryagin et al. [14]. The optimal control

theory was mainly developed and used in the past for

mechanical applications (e.g. for aircraft and spacecraft

operation). It is sometimes used in thermal engineering

(see e.g. [15,16] and the excellent review [17]).

The objective function used previously in [1] is first

considered in this paper. Also, the forced cooling proc-

esses is optimized on the basis of three dissipation meas-

ures, namely the entropy generation and two other

measures associated to the lost available work.
2. Forced cooling processes with minimization of cooling

fluid mass

The cooling process early treated in [1] is presented

now (Fig. 1). A body of mass M, specific heat C and

time-dependent (and space-uniform) temperature T(t)

has to be cooled during a given time interval tc, from

the initial temperature Tinit to the final temperature Tfin,

by using a cooling fluid of constant isobaric specific heat

cp. The fluid (time-dependent) mass flow rate is denoted



Fig. 1. Cooling process of a body of mass M, specific heat C

and temperature T. The mass flow rate of the cooling fluid is _m
while its isobaric specific heat is cp. The fluid comes from the

reservoir at temperature T0 and leaves the body at temperature

Tf,out. The heat transfer area between body and cooling fluid is

A.
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_mðtÞ. The heat transfer surface area between body and
fluid is A while the (constant in time) heat transfer coef-

ficient is U. The fluid is provided by a reservoir of con-

stant temperature T0(<Tinit). While in contact with the

body, the fluid has a uniform (time-dependent) tempera-

ture Tf,out(t). The last hypothesis is well verified for exam-

ple in case of macro-porous super-conducting structures

or in case of large liquid storage tanks well stirred [1].

The heat flux transferred by Newtonian convection

from the body to the fluid is denoted Qb!f and the ther-

mal energy flux received by the fluid while in contact

with the body is denoted Qf,in!out. These two fluxes

are given by the following simple relationships:

Qb!f ¼ UAbT ðtÞ � T f;outðtÞc
Qf;in!out ¼ _mcpbT f ;outðtÞ � T 0c ð2:1; 2Þ

No energy loss is considered during the heat transfer

process. Then, use of Eqs. (2.1), (2.2) and the first law

yields

MC
dT
dt

¼ �Qf ;in!out ¼ �Qb!f

¼ �UA T ðtÞ � T f ;outðtÞ½ 
 ð2:3Þ

The mass m0!tc of fluid consummated from the reservoir

during the cooling process is given by:

m0!tc ¼
Z tc

0

_mðtÞdt ð2:4Þ

Now, the optimization problem is presented. One look

about that particular time evolution of the cooling fluid

mass flow rate (say _moptðtÞ) which makes m0!tc given by

Eq. (2.4) to be a minimum. The constraints Eqs. (2.1)–

(2.3) should also be taken into account.

A dimensionless formulation is convenient. The

dimensionless variables are first defined:

x � t
tc

zðxÞ � T
T 0

yðxÞ � T f ;out
T 0

_lðxÞ � _mcp
UA

ð2:5Þ

Also, dimensionless constants are defined:

zinit �
T init
T

zfin �
T fin
T

sc �
UAtc
MC

ð2:6Þ

0 0
The following relationships exist for the independent

and dependent dimensionless variables:

0 6 x 6 1 zfin 6 z 6 zinit yðxÞ 6 zðxÞ ð2:7Þ

Use of Eqs. (2.1)–(2.7) allows to write the relationships

giving the time dependence of the dimensionless temper-

atures z and y

dz
dx

¼ � sc _l
1þ _l

ðz� 1Þ y ¼ zþ _l
1þ _l

ð2:8; 9Þ

The ordinary differential Eq. (2.8) must be solved by

using the following boundary conditions:

z x ¼ 0ð Þ ¼ zinit z x ¼ 1ð Þ ¼ zfin ð2:10Þ

The dimensionless objective function l is defined by

using Eq. (2.4) as follows:

l � m0!tccp
MC

¼ sc

Z 1

0

_ldx ð2:11Þ

The optimization problem consists now in the minimiza-

tion of l given by Eq. (2.11), by taking into account the
boundary conditions Eq. (2.10) and the constraint Eq.

(2.8).

A good introduction to optimal control theory may

be found in several books (see e.g. [18]). The theory is

applied here with the dimensionless mass flow rate _l
as the control function. Two adjunct functions (say

w0(x) and w1(x)) are used. The Eqs. (2.8) and (2.11)

allow to define the Hamiltonian H as follows:

H � w0 sc _lð Þ þ w1 � sc _l
1þ _l

ðz� 1Þ
� �

ð2:12Þ

The values of the unknown function z(x) at the end-
points of the integration interval (i.e. at x = 0 and

x = 1) are known (they are given by Eq. (2.10)). Accord-

ing to Pontryagin�s theory one ca use in this case

w0 = �1 (see e.g. [19]). The adjunct function w1 obeys
the equation dw1/dx = �oH/dz. Use of Eq. (2.11) yields:

dw1

dx
¼ sc _l
1þ _l

w1 ð2:13Þ

One eliminates _l between the two ordinary differential

Eqs. (2.8) and (2.13). Solving the resulting equation

yields:

�w1ðz� 1Þ ¼ C0 ¼ ct ð2:14Þ

where C 0 is an integration constant.

The optimal control function (say lopt(x)) can be ob-
tained by solving the equation oH=o _l ¼ 0. Taking into

account Eq. (2.11) one finds after some algebra:

_lopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w1ðz� 1Þ

p
� 1 ¼

ffiffiffiffiffi
C0

p
� 1 ¼ ct ð2:15Þ

Here Eq. (2.14) was also used. From Eq. (2.15) one

learns that the optimum mass flow rate is constant in

time. Use of Eq. (2.15) allows to solve Eq. (2.10) for

the unknown function z(x). In addition, taking into
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account the boundary conditions (2.10) yields the inte-

gration constant C 0, which in turn yields the optimum

mass flow rate from Eq. (2.15). The result is:

_lopt ¼
ln zinit�1

zfin�1

sc � ln zinit�1
zfin�1

ð2:16Þ

The optimum dimensionless temperature time distribu-

tions are found from Eqs. (2.8) and (2.9). They are:

zoptðxÞ ¼ 1þ zinit � 1ð Þ exp �
sc _lopt
1þ _lopt

x

 !

yoptðxÞ ¼
zoptðxÞ þ _lopt
1þ _lopt

ð2:17; 18Þ

The minimum dimensionless cooling fluid mass is easily

found from Eqs. (2.11) and (2.16):

lmin ¼
sc ln

zinit�1
zfin�1

sc � ln zinit�1
zfin�1

ð2:19Þ

A few comments follow. The minimum cooling fluid

mass given by Eq. (2.19) increases by increasing the

cooling time interval sc. However, this increasing is

not linear in sc as one might expect from a cooling proc-

ess with constant mass flow rate. The reason is as fol-

lows. The cooling fluid mass is, indeed, linear in the

mass flow rate but the last quantity is not linear in sc,
as Eq. (2.16) shows. For an infinitely long cooling proc-

ess the mass flow rate vanishes but the cooling fluid mass

is still finite:

lim
sc!1

_lopt ¼ 0 lim
sc!1

l ¼ ln
zinit � 1

zfin � 1
ð2:20; 21Þ

Here Eqs. (2.16) and (2.19) were used again. The result

Eq. (2.21) was previously obtained in [1] by using a dif-

ferent approach.

There is a minimum time interval s0c;min needed by the
optimum cooling process. It is obtained from Eq. (2.16)

s0c;min ¼ ln
zinit � 1

zfin � 1
ð2:22Þ

One needs sc>sc, min in order to have a finite, positive,
optimum mass flow rate.
3. Forced cooling processes with minimization of

dissipation measures

3.1. Dissipation measures

A wildly used measure of dissipation is entropy gen-

eration. The entropy generation rate associated to the

heat flux Qb!f transferred from the cooled body to the

cooling fluid is denoted _Sgen and is given by:

_Sgen ¼ Qb!f

1

T f ;out
� 1

T

	 

ð3:1Þ
The entropy generation Sgen is obtained by integrating

Eq. (3.1) for the duration tc of the cooling process:

Sgen ¼
Z tc

0

_Sgen dt ð3:2Þ

Two additional dissipation measures will be considered

now. They have in common the notion of lost (available)

work. The analysis is more involved than in case of entro-

py generation because at least one additional system (the

work reservoir) must be considered. This increases con-

siderably the number of possible cases and two classes

of cases were described in [20]. In the first class (say A),

the meta-system (or the universe) consists of three sys-

tems (to be more specific, these systems are here. the

cooled body, the cooling fluid and the work reservoir).

In the second class (B), an environment is added to the

previous three systems. What of these ways of defining

the lost available work is to be used depends of course

on the practical application. A number of examples were

presented in [20] but due to the lack of space just two of

them (denoted (a) and (b), respectively) will be used in

the following. They belong to the class A above.

(a) One could ask what is the lost work rate (say _W lðaÞ)

in case the body looses the heat flux Qb!f. This

implies using a reversible refrigeration engine whose

coefficient of performance is COP = Tf,out/

(T�Tf,out). Then, use of Eq. (3.1) yields:

_W lðaÞ ¼ Qb!f=COP ¼ T _Sgen ð3:3Þ

(b) One could ask what is the work rate (say _W lðbÞ) to be

lost in case of heating the cooling fluid by a heat flux

Qb!f. This implies using a reversible heat pump

whose coefficient of performance is COP = T/(T�
Tf,out). By using Eq. (3.1) one finds:

_W lðbÞ ¼ Qb!f=COP ¼ T f;out _Sgen ð3:4Þ

In practice, choosing between cases (a) and (b) above

depends on the usage of the energy stored by the cooling

fluid, after the cooling process is completed. The Eqs.

(3.3) and (3.4) connect the rates of lost available work,
_W lðaÞ and _W lðbÞ, respectively, with the entropy generation

rate _Sgen. In both equations the temperature multiplying
_Sgen is generally a time dependent quantity. As a conse-
quence, the minimum of the lost available work does not

normally coincide with the minimum of the entropy

generation.

The lost available work for both above cases, Wl(a)

and Wl(b), respectively, is obtained by integrating Eqs.

(3.3) and (3.4) for the whole cooling process:

W lðaÞ ¼
Z tc

0

_W lðaÞ dt W lðbÞ ¼
Z tc

0

_W lðbÞ dt ð3:5; 6Þ

Note that the absolute value of the lost available work is

considered here.



Table 1

Dimensionless dissipation measure rates and dissipation measures. Notations Eqs. (2.5) and (2.6) were used

a. Dimensionless dissipation measure rate Equations used

a1 ~_Sgen �
_Sgen
UA

¼ _l2ðz�1Þ2
z 1þ _lð Þ zþ _lð Þ (2.1), (3.1)

a2 ~_W lðaÞ �
_W lðaÞ
UAT 0

¼ _l2ðz�1Þ2
1þ _lð Þ zþ _lð Þ (2.1), (3.1), (3.3)

a3 ~_W lðbÞ �
_W lðbÞ
UAT 0

¼ _l2ðz�1Þ2
1þ _lð Þz2 (2.1), (3.1), (3.4)

b. Dimensionless dissipation measure Equations used

b1 ~Sgen � Sgen
MC ¼ sc

R 1
0

_l2ðz�1Þ2
z 1þ _lð Þ zþ _lð Þdx (2.1), (3.1), (3.2)

b2 eW lðaÞ �
W lðaÞ
MCT 0

¼ sc
R 1
0

_l2ðz�1Þ2
1þ _lð Þ zþ _lð Þdx (2.1), (3.1), (3.5)

b3 eW lðbÞ �
W lðbÞ
MCT 0

¼ sc
R 1
0

_l2ðz�1Þ2
1þ _lð Þz2 dx (2.1), (3.1), (3.6)

Fig. 2. The ratio s00c;min=s
0
c;min between the minimum duration of

a cooling process minimizing the dimensionless lost available

work eW lðbÞ and the minimum duration of a cooling process

minimizing the dimensionless cooling fluid mass l, respectively.
See Eqs. (2.22) and (3.13) for definitions.
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Appropriate dimensionless quantities for the dissipa-

tion measure rates _Sgen; _W lðaÞ and _W lðbÞ, and for the time

integrated quantities Sgen,Wl(a) and Wl(b) are defined in

Table 1, by using the notation Eqs. (2.5) and (2.6).

3.2. Minimization of dissipation measures

Three different objective functions are considered

here. They are the dimensionless dissipation measures
~Sgen; eW lðaÞ and eW lðbÞ defined in Table 1b. Details of the

optimization procedure are given now for the only case

which allows analytical solutions.

The optimization problem consists in the minimiza-

tion of the objective function eW lðbÞ given by equation

in Table 1 b3, taking into account the constraint Eq.

(2.8) and the boundary conditions Eq. (2.10). Again,

the dimensionless mass flow rate _l is the control func-

tion while w0(x) and w1(x) are the adjunct functions.
The Hamiltonian H is defined as follows:

H � w0

sc _l
2ðz� 1Þ2

1þ _lð Þ2z

" #
þ w1 � sc _l

1þ _l
ðz� 1Þ

� �
ð3:7Þ

Again, one can choose w0 = �1 and the adjunct function
w1 obeys the equation dw1/dx = �oH/dz i.e.:

dw1

dx
¼ � sc

4
w2
1 ð3:8Þ

Use of Eqs. (2.8) and (3.8) yields:

w1 ¼ � C00ffiffi
z

p ð3:9Þ

where C00>0 is an integration constant. The optimal

control function lopt(x) is obtained by solving the equa-
tion oH=o _l ¼ 0. Taking into account Eq. (3.7), one finds

after some algebra:

_lopt ¼ � w1z
2ðz� 1Þ þ w z

¼ C00 ffiffizp

2ðz� 1Þ � C00 ffiffizp ð3:10Þ

1

Here (3.9) was also used. The differential Eq. (2.8) is

solved by using Eq. (3.10) and the boundary conditions

(2.10). One finds:

zðxÞ ¼ ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

pð Þx½ 
2

C00 ¼
4

ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

p �
sc

ð3:11; 12Þ

The dependence of the optimum dimensionless mass

flow rate _lopt and of the adjunct function w1 on the

dimensionless time x can be easily found from Eqs.

(3.9)–(3.12) and will be not given explicitly here. How-

ever, _lopt must be a positive finite quantity. Conse-

quently, from (3.10) and (3.12) one finds after some

algebra the minimum duration s00c:min of the optimized
cooling process:



Fig. 3. The dependence of the dimensionless entropy genera-

tion rate ~_Sgen (equation in Table 1 a1) and dimensionless lost
available work ~_W lðbÞ (equation in Table 1 a3) on the dimen-

sionless time x for two optimal control strategies (i.e. minimi-

zation of cooling fluid mass and minimization of lost available

work Wl(b), respectively). The following values were used:

zinit = 3, zfin = 1.2, sc = 10.
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s00c:min ¼
2

ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

p �
zfin � 1

ð3:13Þ

Here we have also taken into account that the minimum

value allowed for z(x) is zfin. Fig. 2 shows the ratio

s00c;min=s
0
c;min. Generally, the minimum duration for the

cooling process with minimum lost available work con-

siderably exceeds the minimum duration for the cooling

processes with minimum mass of cooling fluid. How-

ever, for low values of the ratio zinit/zfin and high values

of zfin the reverse is true.

The difference between the two optimal control strat-

egies (i.e. minimum cooling fluid mass and minimum

lost available work) from the point of view of the time

variation of the dissipation rates is obvious (Fig. 3).

Both the entropy generation rate and the lost available
Table 2

Minimization of two dissipation measures. Equations to be solved to

a. Minimization of dimensionless entropy gene

a1

a2

b. Minimization of dimensionless lost available

b1

b2
work rate decrease in time in case of the minimization

of cooling fluid mass. The strategy of minimizing the lost

available work implies a slightly time-increasing entropy

generation rate and an almost constant lost work rate.

The minimum dimensionless lost available workeW lðbÞ is obtained by using equations in Table 1 b3 and

Eqs. (3.10)–(3.12). After integration one finds the simple

relationship:

eW lðbÞ;min ¼
4

sc
ð3:14Þ

Note that eW lðbÞ;min does not depend on zinit or zfin, as the

minimum mass of cooling fluid Eq. (2.19) does. Also, in

the limit of an infinitely long cooling process (i.e.

sc ! 1), eW lðbÞ;min given by (3.14) vanishes, in agreement

with well-known results of classical thermodynamics.

The above optimization procedure can be repeated in

case of the other dissipation measures, namely ~Sgen andeW lðaÞ (see equations in Table 1 b1 and b2). These two

cases do no allow analytical solutions. Table 2 summa-

rizes the equations involved. These equations should

be solved numerically, together with Eq. (2.8) and the

boundary conditions for z (i.e. Eq. (2.10)). Note that

no boundary condition is known for the adjunct func-

tion w1. This is a rather common situation when optimal
control problems are solved. The following procedure

was adopted. A trial value (say w
_

1;init) for the boundary

value w1(x = 0) was chosen. For that trial boundary

value, the Eq. (2.8) and the appropriate equation in

Table 2 for the time variation of w1 were solved numer-
ically, starting from x = 0, where the boundary value for z

is known (i.e. z = zinit). The result obtained for z at x = 1

(say z_fin) is compared with the expected boundary value

zfin of Eq. (2.10) and the following quantity is computed:

F w
_

init

� �
� zfin � z_fin

 �2 ð3:15Þ

F w
_

1;init

� �
vanishes for the right choice of w

_

1;init. In case

of a significantly large value of F w
_

1;init

� �
, another value
gether with Eq. (2.8)

ration ~Sgen (see equation in Table 1 b1)

dw1
dx

¼ � sc _l
1þ _l

_l z _l þ _l þ 2zð Þðz� 1Þ
zþ _lð Þ2z2

þ w1

" #

_lopt ¼
�zðR� 1Þ þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R Rþ z� 1ð Þ

p
Rðzþ 1Þ � 1

with R � � z� 1

zw1

work eW lðaÞ (see equation in Table 1 b2)

dw1
dx

¼ � sc _l
1þ _l

_l zþ 2 _l þ 1ð Þðz� 1Þ
zþ _lð Þ2

þ w1

" #

_lopt ¼
�z R0 � 1ð Þ þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 R0 þ z� 1ð Þ

p
R0ðzþ 1Þ � 1

with R0 � � z� 1

w1
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of w
_

1;init is chosen and the procedure is repeated. In prac-

tice, F w
_

1;init

� �
was minimized by using the routine

FMIN from [21]. Once the appropriate value of w
_

1;init

was determined, the Eq. (2.8) and the appropriate differ-

ential equation in Table 2 were solved for the optimal

paths of z and w1.
Fig. 4 shows the time dependence of the dimension-

less temperature z for all the four optimal control strat-

egies envisaged in this paper. The associated optimal

cooling fluid mass flow rates _lopt are presented in Fig.
5. The minimum cooling fluid mass strategy and the
Fig. 4. Dependence of dimensionless temperature z on dimen-

sionless time x in case of four optimal control strategies: (1)

minimum dimensionless cooling fluid mass l (objective function
defined in Eq. (2.11)); (2) minimum dimensionless entropy

generation ~Sgen (objective function defined in equation Table 1
b1); (3) minimum dimensionless lost available work eW lðaÞ
(objective function defined in equation Table 1 b2); (4)

minimum dimensionless lost available work eW lðbÞ (objective

function defined in equation Table 1 b3). The following values

were used: zinit = 3, zfin = 1.2, sc = 10.

Fig. 5. Dependence of dimensionless cooling fluid mass flow

rate _lopt on dimensionless time x for the four optimal control

strategies of Fig. 4. Again, zinit = 3, zfin = 1.2, sc = 10.
minimum entropy generation strategy show a rather

non-linear time dependence of z. Interestingly, the asso-

ciated optimum mass flow rate is constant in time for the

first strategy and nearly constant for the second strategy.

In the last case a minimum value of _lopt is however
obvious. The two strategies of lost available work

minimization imply a slightly nonlinear or even a linear

time dependence of z (Fig. 4). This is a consequence of

the rather strong non-linear increase in the opti-

mum mass flow rate at the end of the cooling process

(Fig. 5).
4. Conclusion

Optimization of forced cooling processes is impor-

tant for many branches of industry, including cryogen-

ics, electric energy transportation and metallurgy.

Optimization techniques based on classical thermody-

namics, heat transfer and fluid mechanics are frequently

used by designers. More sophisticated methods using

Euler–Lagrange equations were also proposed [1]. In

this paper the optimization of forced cooling-down

processes is treated by using an even more advanced

method, namely the optimal control theory.

Various objective functions could be envisaged dur-

ing optimization. They include the consummated cool-

ing fluid mass and a number of dissipation measures,

as for example entropy generation and the lost available

work. Four objective functions were shortly presented

and minimized in this paper. Using two of the objective

functions allows analytical solutions while the other two

require numerical procedures. In practice, choosing be-

tween these objective functions depends on the particu-

lar implementation of the cooling process and on the

usage of the energy stored by the cooling fluid, after

the cooling process is completed.

The main conclusions of this work are:

(1) The minimum cooling fluid mass is obtained for a

constant mass flow rate. The consummated fluid

mass increases by increasing the cooling process

duration tc. This increasing is not linear in tc, as

one might expect from a cooling process with con-

stant mass flow rate.

(2) For an infinitely long cooling process the mass flow

rate vanishes but the cooling fluid mass is still finite,

in agreement with [1].

(3) There is a minimum time interval needed by the

optimum cooling process. It depends on the chosen

objective function. The minimum duration for the

cooling process with minimum lost available work

normally exceeds the minimum duration for the

cooling processes with minimum mass of cooling

fluid, as one might expect. However, the reverse is

true for some particular cases.
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(4) The minimum lost available work eW lðbÞ;min (see Eq.

(3.14)) does not depend on the initial and final tem-

peratures of the cooled body but just on the dura-

tion of the cooling process.

(5) Those cooling strategies with rather non-linear time

dependence of cooled body temperature are based

on constant, or nearly constant, optimum mass

flow rates of the cooling fluid. The cooling strategies

with linear (or slightly non-linear) time dependence

of cooled body temperature are based on rather

strong non-linear increase in the cooling fluid opti-

mum mass flow rate at the end of the cooling

process.
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